
Iterated Rounding for Hypergraph Matching1

• In this lecture, we look at two simple applications of relaxation and rounding for packing problems.
In these problems, we wish to maximize a linear function. We will use the fact that LP optima are
basic feasible solutions, and how this helps in approximation algorithm design.

• Hypergraph Matching. A hypergraph H = (V,E) is a generalization of graphs where every (hy-
per)edge e ∈ V is an arbitrary subset of the vertices instead of a pair. A k-uniform hypergraph is
one where |e| = k for all e ∈ E. In the hypergraph matching problem, we need to find a collection
M ⊆ E such that for any two e, e′ ∈M we have e ∩ e′ = ∅, and |M | is as large as possible. We will
focus on solving the problem on 3-uniform hypergraphs.

• A Simple 1
3 -approximation. We begin with a simple algorithm whose structure we will borrow for

our final algorithm. Before stating it, let us make a useful definition: given an edge e ∈ E, let N(e)
denote all edges which intersect e. That is, N(e) := {f : f ∩ e 6= ∅}. Here is the algorithm.

1: procedure MAXIMAL HYPERGRAPH MATCHING(3-uniform H = (V,E)):
2: M ← ∅; F ← E.
3: while F 6= ∅ do:
4: Pick an arbitrary edge e ∈ F and add it to M .
5: Remove all edges in N(e) from F .
6: return M .

Theorem 1. MAXIMAL HYPERGRAPH MATCHING is a 1
3 -approximation.

Proof. Suppose M∗ is the largest cardinality matching. Let us consider two variables o and a. Initially
o← opt = |M∗| and a← 0. At every run of the while loop we increment a← a+1 to indicate how
many edges are added to M . We also decrement o by the number of edges of M∗ removed in Line 5.
The crucial observation is that this number is at most 3. Why? Let e = (u, v, w) be the edge added to
M . In Line 5, we remove all edges in F incident to u, v, and w. Since M∗ is a matching, there can
be at most one edge f1 ∈M∗ containing u, at most one edge f2 ∈M∗ containing v, and at most one
edge f3 ∈M∗ containing w. Thus, opt decrements by at most 3.

At the termination of the while loop, we have a = alg indicating the number of while loops. We also
have that the value of o at the end is at least opt− 3alg. But the value of o at the end must be 0 since
there are no more edges left at the end. So, opt− 3alg ≤ 0 implying alg ≥ opt/3.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 2nd Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

Exercise: K Suppose the hyperedges have weights w(e) and the goal was to pick the largest
weight matching. Modify the above algorithm and analysis to describe a 1

3 -algorithm for the
same.

• LP Relaxation. One can write the following natural LP relaxation for the 3-hypergraph matching
problem.

lp(H) := maximize
∑
e∈E

xe (1)∑
e:v∈e

xe ≤ 1, ∀v ∈ V

xe ≥ 0, ∀e ∈ E

We can solve this LP and obtain a solution xe for all e ∈ E. How can we use it to get a large
matching? Which edge e should we pick in the matching? Note that once we pick e, we must
delete all edges in N(e) in the subsequent rounds. The total “fractional mass” lost, therefore, is
x(N(e)) :=

∑
f∈N(e) xf . Thus, one idea is to pick an edge e with the “smallest” x(N(e)).

1: procedure LP-BASED HYPERGRAPH MATCHING(3-uniform H = (V,E)):
2: M ← ∅; F ← E.
3: while F 6= ∅ do:
4: Solve (1) on the residual hypergraph (V, F) to get an optimum bfs x.
5: If there is an edge e with xe = 0, remove it from F and break.
6: Pick an edge e ∈ F with smallest x(N(e)) and add it to M .
7: Remove all edges from N(e) from F .
8: return M .

Theorem 2. The matching returned by the above algorithm is a 3
7 -approximation.

Proof. The proof follows the same structure as that of Theorem 1. We initialize the two variable o
and a. If we run Line 5, then we keep the variables unchanged. Otherwise, we increment a by 1 in
each iteration, and thus at the end a = alg. We initialize o with lp := lp(H). In every iteration, if D
is the set of edges removed in Line 7, then we decrement o by x(N(e))) where x is the solution to the
LP obtained in Line 4. The heart of the analysis lies in the following claim.

Claim 1. At the beginning of Step Line 6, there exists an edge e ∈ F with x(N(e)) ≤ 7
3 .

We prove the above claim in the next bullet point. Right now, note that the above suffices to prove The-
orem 2. Indeed, let lpi be the value of the LP just before the ith iteration and let x(i) be an optimal
solution. If e is the edge picked in this iteration, then note that x′ which just zeroes out x(i) at N(e)
is a valid solution before the i+ 1th iteration. Thus, lpi+1 ≥ lpi − x(N(e)) ≥ lpi − 7

3 . On the other
hand, the LP-value at the end of the algorithm must be 0 since all edges are deleted. Therefore, if the
algorithm runs for alg rounds, we have 0 ≥ lp− 7alg

3 , proving the theorem.

2

• Proof of Claim 1. The proof of the claim will use the fact that x was a basic feasible solution. Recall
that a basic feasible solution satisfies dimension-many linearly independent inequalities as equality.
In our case, in Line 4, the solution x satisfies |F | many linearly independent inequalities. Since the
claim is about the case when we reach Line 6, none of these |F | inequalities are of the form “xe ≥ 0”.
Therefore, there must exist ≥ |F | vertices v with

∑
e:v∈e xe = 1.

Indeed, let T be the subset of tight vertices as described above; so |T | ≥ |F |. For v ∈ T , let deg(v)
denote the number of edges of F incident on v. Now note that∑

v∈T
deg(v) =︸︷︷︸

hypergraph handshake

∑
e∈F
|e ∩ T | ≤ 3|F |

Since |T | ≥ |F |, we can assert that there must exist some v ∈ T with deg(v) ≤ 3.

Now consider the edge e∗ ∈ F with v ∈ e∗ and x(e∗) largest among all such edges. We claim that
this edge e suffices for the claim. Indeed, first note that

1 =︸︷︷︸
v∈T

∑
e:v∈e

x(e) ≤ x(e∗) · deg(v) ≤ 3x(e∗) ⇒ x(e∗) ≥ 1

3

Now suppose e∗ = (v, w, z). Note that

x(N(e∗)) ≤
∑
f :v∈f

xf +
∑

f :w∈f
xf +

∑
f :z∈f

xf − 2x(e∗) ≤ 3− 2

3
=

7

3

where we subtracted 2x(e∗) because of double-counting. Indeed, there could be many edges which
could be double counted, and that is why we have a inequality. This completes the proof of the claim.

Remark: The above rounding algorithm is an iterative rounding algorithm. As stated above the
algorithm seems inefficient as it solves an LP in Line 4. In reality, Line 4 and Line 5 can be taken
outside the while loop. The reason is that after a run of the while loop, the “residual solution” is
also a basic feasible solution to a slightly modified LP. We leave the details from these notes.

Exercise: KK Find a 3-uniform hypergraph H with lp(H) = 7
3 · opt(H) thus proving that the

integrality gap of the LP(1) is exactly 3
7 .

Notes

It is easy to generalize the above to obtain a
(
k − 1 + 1

k

)−1-approximation algorithm for k-uniform hyper-
graph matching, where every hyperedge has exactly k-vertices. This result was first proved in the paper [4]
by Füredi, Kahn and Seymour. In fact, [4] proved a more general result for an arbitrary hypergraph : they
proved that in any hypergraph one can find a matching M such that

∑
e∈M

(
|e| − 1 + 1

|e|

)
≥ lp. The analy-

sis above is from the paper [3] by Chan and Lau who also give an
(
k − 1 + 1

k

)−1-approximation algorithm
which works for the weighted case as well. We refer the reader to that paper for more details.

Füredi, Kahn, and Seymour [4] conjectured a weighted generalization of their theorem: they conjecture
that with any weights w(e) on edges, there exists a matching M such that

∑
e∈M

(
|e| − 1 + 1

|e|

)
w(e) ≥ lp,

where lp now has w(e) in the objective of (1). This conjecture is still open. Very recently, it was proved for
hypergraphs with all |e| ≤ 3 in the paper [2] by Bansal and Harris. See also the recent paper [1] by Anegg,
Angelidakis, and Zenklusen for more on the FKS conjecture.

3

References

[1] G. Anegg, H. Angelidakis, and R. Zenklusen. Simpler and stronger approaches for non-uniform hyper-
graph matching and the füredi, kahn, and seymour conjecture. In Symposium on Simplicity in Algorithms
(SOSA), pages 196–203, 2021.

[2] N. Bansal and D. G. Harris. Some remarks on hypergraph matching and the Füredi-Kahn-Seymour
conjecture. arXiv preprint arXiv:2011.07097, 2020.

[3] Y. H. Chan and L. C. Lau. On linear and semidefinite programming relaxations for hypergraph matching.
Math. Programming, 135(1):123–148, 2012.

[4] Z. Füredi, J. Kahn, and P. D. Seymour. On the fractional matching polytope of a hypergraph. Combina-
torica, 13(2):167–180, 1993.

4

